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To curb the human appetite for jumping to unwarranted data-based conclusions about a target of
inference, statistics courses set out to formalize the transition from data to statistical inference.
Unfortunately, this transition typically unfolds in a series of fits and starts. This paper sets out
to rectify this situation. Instead of following the standard sequence of seemingly unrelated topics
(descriptive statistics, probability, random variables, sampling distributions, ...), this paper argues
that it is better to introduce formal links between data and the targets of inference early on in any
elementary course. To accomplish this, an explicit “colon notation” is used to clearly compare and
contrast objects based on samples, populations, and processes. The colon notation, along with the
important concepts of sample, population, and process distributions, allows the instructor to present
linking results, such as laws of large numbers and “the fundamental theorem of statistics,” within
the first few class periods. These data-target links lead naturally to well-formulated questions about
target populations and processes, and serve as a conduit to statistical inference. Equipped with the
concepts already used to formulate the data-target links, the instructor can highlight the basic ideas
underlying statistical inference earlier in the course. This leaves more time to cover other important
statistical concepts in a survey course.
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1 Introduction

The transition from data to informal statistical inference is a smooth and natural one that occurs

automatically in the human brain. These informal inferences can be useful on occasion, but too

often they are baseless owing to a lack of any formal link between the data and the perceived

target of inference, typically a population or process. Of course there are other reasons that we

are led astray with informal, automatic inferences (cf. Kahneman, 2011), but this paper focuses on

the “data-target link” issue. To curb the human appetite for jumping to unwarranted data-based

conclusions about a target of inference, statistics courses set out to formalize the transition from data

to statistical inference. Unfortunately, this formal transition is not always a smooth one, especially

from the perspective of post-secondary students in an elementary survey course. The vast literature

on statistics education makes this abundantly clear (cf. delMas et al. 1994, Moore et al. 1995,

Garfield and Ben-Zvi 2007, Thompson et al. 2007, Wessels and Nieuwoudt 2013, and references

therein). To the student, the transition unfolds in a series of fits and starts. It is a march through a

sequence of seemingly unrelated topics with the apparent final goal of learning how to use formulas

for t tests and confidence intervals. The student learns about descriptive statistics, then abandons

this topic and abruptly changes course to learn about probability and random variables. The student

is then told about the importance of sampling distributions for statistical inference and is bombarded

with confusing statements such as “the sample mean has an approximate Normal distribution,” or
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“the mean of the sample mean is equal to the population mean.” Having just computed a sample

mean of x “ 105.8, the student is justifiably perplexed by such statements. Finally, the student is

introduced to the wonderfully mysterious formulas of hypothesis testing and confidence intervals. In

applying these formulas, students find themselves alternating between treating symbols such as x

and
?
npx ´ µ0q{s as observed values and random variables. From the student’s perspective, this

nebulous, shifting treatment of symbols is the extent to which data and statistical inference are

linked.

The current paper sets out to smooth the formal transition from data to statistical inference.

Instead of following the standard sequence of disjoint topics, we argue that it is better to introduce

formal links between data and the targets of inference early on in the course. In particular, the

important concept of a process (aka random experiment), along with suggestive notation, allows

the instructor to introduce linking results such as the laws of large numbers and “the fundamental

theorem of statistics” within the first few class periods. Our presentation stresses that the validity

of these linking results depends critically on the sample generation or selection process. These data-

target links lead naturally to well-formulated questions about target populations and processes, and

serve as a conduit to statistical inference. Equipped with the concepts already used to formulate the

data-target links, the instructor can highlight the basic ideas underlying statistical inference earlier

in the course. This leaves more time to cover other important statistical concepts in a survey course

(see for example, concepts listed in the American Statistical Association’s GAISE report, 2012).

Space limitations preclude an exhaustive treatment of all topics encountered on the journey

from data to statistical inference. Instead, we highlight only the main concepts, especially those

that are best described using less conventional, more explicit, notations. Whereas many of the

concepts covered herein are not new (they are discussed in any introductory statistics textbook), the

ordering and emphases are different and the presentation approach is novel. We introduce a “colon

notation” that highlights differences and commonalities among data (X:s), populations (X:P ), and

processes (X:RE). Confusion about statistical inference concepts often stems from the conflation of

the three distinct distribution types: the sample, population, and process distribution of a variable

(cf. delMas et al. 2004). The colon notation mitigates such conflation problems by promoting an

explicit accounting of these three distribution types and summaries thereof. For example, the sample,

population, and process mean of X are denoted meanpX:sq, meanpX:P q, and meanpX:REq, rather

than the more conventional x, µ, and µ.

Most elementary statistics textbooks restrict attention to inferences about populations. This

usually forces the instructor and students to confront awkward notions such as “random sampling

from an infinite population” and targets of inference described as “the population mean of an infinite

number of rolls of a die.” Herein, we accommodate inferences about both populations and processes,

and clearly distinguish between the two. This is arguably a more natural approach (cf. Frick 1998),

which leads to clearer definitions of inference targets and avoids discussions of infinite populations.

Process-related concepts such as process outcomes and process distributions are common threads

underlying many of the ideas in this paper. Data and variable values, such as the observed sample

mean, are process outcomes, and inferences are typically based on process distributions of variables.
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For emphasis, we introduce process outcome notation and explicitly refer to the underlying process

when describing a process distribution for statistical inference. On a related note, the reader will

notice that we mostly avoid using the phrase “sampling distribution” in this paper. Section 6.1 gives

several reasons for this avoidance.

The balance of this paper gives more details on the topics described above. Section 2 gives a

definition of data and variables and introduces the colon notation. Section 3 describes and compares

the ultimate goals of descriptive and inferential statistics. Population and process targets of inference

are defined. The three distribution types and corresponding summaries are described in Section 4.

Section 5 gives results that formally link data and targets of inference. These results, which include

the fundamental theorem of statistics and laws of large numbers, are given in a form that can be

presented within the first few lectures of an elementary course. In particular, there is no need to cover

topics such as IID random variables. Section 6 represents a prelude to statistical inference. Process

distributions and the Central Limit Theorem along with variants, such as the Studentized Mean

Approximation, are described. For economy of space, this section touches on interval estimation

of a process or population mean, but does not delve into the important topic of statistical tests

of hypotheses. Section 7 gives two canonical examples with questions that can be addressed using

the ideas in this paper, and Section 8 gives a brief discussion. Finally Appendix A gives details

on a general, less elementary, version of the fundamental theorem of statistics, Appendix B gives

some figures that correspond to several of the concepts and notations introduced in this paper, and

Appendix C gives detailed solutions to the examples of Section 7.

2 Data and Variables

Arguably, data is the most important ingredient in statistics. We use data to describe samples and

to make inferences about populations and processes. We use data to make informed decisions in

the face of uncertainty and we use it to bolster or discredit an argument. On the computational

side, we summarize, tabulate, graph, munge, and mine data. Because data feature so prominently

in statistics (a discipline also known as data science), it is important to have a clear definition and

a useful notation.

Technically, data are characteristic values for a collection of entities, such as a sample of people

or outcomes of a random experiment. Hair color is a characteristic; hair colors for a sample of people

are data. Grade point average (GPA) is a characteristic; GPA values for a sample of undergraduates

are data. The number of up-dots is a characteristic; the number of up-dots on each of five rolls of

a die are data. A variable in statistics is a formal or symbolic representation of a characteristic (cf.

Mcnaughton, 2002). For example, the variable X might be used to represent the characteristic hair

color. For convenience, we follow convention and use the terms ‘characteristic’ and ‘variable’ inter-

changeably. More formally, a variable in statistics, as opposed to mathematics, can be conveniently

viewed as a function that maps an entity to a characteristic value.2

2An entity is anything that can be described, such as a person, a sample of people, a place, a process outcome, or
a scenario. Characteristic values may be numbers or they may be other more exotic objects such as matrices, word
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In an elementary course, it is usually sufficient to restrict attention to data that can be viewed

as a collection of X or pX,Y q values for a sample of entities. The upper case letters X and Y are

variables (equivalently, characteristics) that measure the entities in the sample. Such data can be

represented using the “colon” notation X:s and pX,Y q:s. For example, X:s (pronounced “X of s”)

is the collection of X values for the entities in the sample s “ ps1, . . . , snq. Formally,

X:s ” X:ps1, . . . , snq ” pXps1q, Xps2q, . . . , Xpsnqq,

where Xpsiq is the X value for entity si, see Figure 1 in Appendix B. Similarly,

pX,Y q:s “ ppXps1q, Y ps1qq, pXps2q, Y ps2qq, . . . , pXpsnq, Y psnqqq

where the pair pXpsiq, Y psiqq give the X and Y values for entity si.

This suggestive colon notation has several advantages over the more conventional notation for

data, e.g. x “ px1, . . . , xnq. The symbol X:s reminds us that the data are X values for the sample s.

Clearly, the GPA values for a sample of 25 female students, say GPA:sf , is different from the GPA

values for a sample of 25 male students, say GPA:sm. We could use x and y for these two data sets

and remind students that they are GPA values for two different samples, but the context is quickly

lost and the “little x’s and little y’s” quickly become “little x’s and little y’s” and nothing more.

Similarly, GPA:sf and AGE:sf are different data sets that can be used to describe the same sample

of 25 females, sf . With x and y notation, the student will quickly forget that both data sets measure

the same sample. The colon notation forces the reader to take note of both the variable used and

the collection of entities that it is measuring. This notation is designed to prompt questions about

what sample is being measured, how the sample was selected or generated, and how the variable is

actually defined.

3 Descriptive versus Inferential Statistics

3.1 Descriptive Statistics

The ultimate goal of descriptive statistics is to describe a sample s using data, say X:s or pX,Y q:s.

To “use data” for such a description, we must in turn describe or summarize the data itself. We

make two important observations: (1) The ultimate goal of descriptive statistics is not to describe

data; rather it is to describe a sample s using data. (2) A description of a sample s based on data

X:s or pX,Y q:s is necessarily incomplete because, besides X and Y , there are infinitely many other

characteristics of the entities in s. Observation (1) highlights the preeminent role of the sample s in

descriptive statistics and Observation (2) highlights the incompleteness of any statistical description

and opens the door to competing descriptions of the same sample s.

It is not immediately clear how to describe or summarize data X:s, especially when the sample is

large. A useful starting point is the idea of ‘distribution’ of data X:s, denoted distpX:sq. Technically,

descriptors (Xpeq “ red), intervals (Xpeq “ r96.2, 99.8s), or even functions (Xpeq “ fp¨; zpeqq, where fpu; zpeqq ” uzpeq).
In this paper, unless otherwise stated, we focus on scalar-valued variables.
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distpX:sq is the collection of distinct values of X:s along with their relative frequencies. For example,

if X:s “ p5, 3, 4, 5, 4, 4q then the collection of distinct values p3, 4, 5q along with the corresponding

relative frequencies p16 ,
3
6 ,

2
6q gives the distribution distpX:sq. The distribution is a useful summary

because it, or a coarser summary thereof, can be graphically depicted using a bar graph, a histogram,

or a density plot, for example. Equipped with distributions, we can graphically compare multiple

data sets, say X:s1, X:s2,. . . X:sK , and hence graphically compare samples s1, s2, . . . , sK based on

variable X.

Simpler, but less fundamental summaries of data X:s, including sample means, variances, and

quantiles, are available when X is scalar-valued. For example, the mean of X for sample s, denoted

meanpX:sq, is defined as

meanpX:sq “
Xps1q `Xps2q ` ¨ ¨ ¨ `Xpsnq

n
“

sum of X values for s

number of entities in s
.

Two samples, say s1 and s2, can be compared on the basis of meanpX:s1q and meanpX:s2q. This

comparison is clearly incomplete because it measures the entities in s1 and s2 using only the variable

(characteristic) X and it uses only a measure of centrality to describe the data sets X:s1 and X:s2.

The typical elementary statistics course goes on to describe many other graphical and numerical

summaries of data X:s and pX,Y q:s. We will not pursue this topic any further herein. Instead we

close this subsection by pointing out the utility of using notations such as X:s and meanpX:sq, rather

than the more conventional x and x. The former reminds the student that it is the sample s that is

being described using the variable X. The explicit reference to the sample s in this notation stresses

its preeminence in descriptive statistics and serves to curb the urge to misinterpret a summary such

as meanpX:sq as a measure of some larger collection of units or a process.

3.2 Inferential Statistics

The ultimate goal of inferential statistics is to use a sample s to reduce uncertainty about an

incompletely-observed population or an imperfectly-described process. A population, denoted P “

pe1, . . . , eN q, is a finite collection of all entities of interest. Typically N , the size of the population P ,

is so large that it is not feasible to measure or even observe all N entities. A process is generically

a sequence of steps that produces outcomes. At some level of precision, process outcomes are not

perfectly predictable; that is, a process can never be perfectly described and generally the intrinsic

randomness cannot be eliminated. For this reason, we can always view a process as a random ex-

periment and denote it by a symbol such as RE. In this document, we shall use the terms ‘process’

and ‘random experiment’ interchangeably. Examples of processes include simple random sampling,

rolling a die once, rolling a die n times, the manufacturing of a product, or Nature generating the

weather, a financial scenario, or a patient scenario.

Inference about a population P is typically simplified by using data such as X:s to answer

questions about a more focused target such as X:P . The X population, X:P (pronounced “X of

P”), is the collection of X values for all the entities in P ; i.e.

X:P “ pXpe1q, Xpe2q, . . . , XpeN qq, see Figure 1 in Appendix B.
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In this population setting, the sample s “ ps1, . . . , snq can be thought of as a “subset”3 of the

population P “ pe1, . . . , eN q. The collection X:P is viewed as a fixed (non-random) collection of

N values. The outstanding question is, How can we “use data” X:s to make inferences about the

population of values X:P? It should be clear that, among other things, the answer depends on how

we went about choosing the sample s from P . For example, suppose that Xpeq “ 1 or 0 as person e

is for or against a law that keeps minors out of bars after 11pm and suppose that P is the collection

of voting age citizens of Iowa City. On the one hand, if s is a sample of n university freshman, it

is not clear what X:s can tell us about X:P , even if n is very large. On the other hand, if s is a

simple random sample of size n from P , then it seems that X:s should tell us something about X:P ,

especially if n is large.

Inference about a process RE is typically simplified by using data such as X:s to answer questions

about a more focused target such as X:RE (pronounced “X of RE”). The process X:RE is a random

experiment with action-based description (see also Figure 2 in Appendix B),

X:RE “ “random experiment RE is carried out and the X value of the outcome is reported.”

The variable X in the process X:RE is conventionally called a random variable because its value

depends on the unpredictable outcome of the random experiment RE. In this process setting, the

sample s “ ps1, . . . , snq can be viewed as an outcome of a sample-generating random experiment

REs. The outstanding question is, How can we “use data” X:s to make inferences about the process

X:RE? It should be clear that, among other things, the answer depends on whether and how REs

is related to RE. For example, suppose that X is the number of up-dots on a die. On the one hand,

if RE ““roll this 6-sided die” and REs “ “roll a different 10-sided die n times,” then it is not clear

what X:s can tell us about X:RE, even if n is very large. On the other hand, if REs “ “roll this

6-sided die n times,” that is, REs “ “repeat RE n times,” then it seems that X:s should tell us

something about the process X:RE, especially if n is large.

In summary, our simplified goal of inferential statistics is to use data X:s to reduce uncertainty

about the population X:P or process X:RE. (This paper focuses on univariate data X:s, but the

ideas extend readily to inferences based on multivariate data such as pX,Y q:s.) The first step toward

realizing this goal is to formally link the data to the population or process. To present these formal

links, as in Section 5, we must first understand the three distributions of a variable X.

4 Distributions of Variables

4.1 The Three Distribution Types

Operationally, to address the simplified goal of statistical inference of the previous section, we might

use the distribution of X:s to reduce uncertainty about the distribution of X:P or the distribution

of X:RE. This last statement correctly hints at the need to consider three distinct distributions

3Strictly speaking, s is an ordered n-tuple that can have repeat values, so it could technically include every value
in P , at least once; i.e. it need not be a “subset” as defined in set theory. Nonetheless, in practice, it generally does
not have repeat values and it is a proper subset of P , with n ă N , so we will continue to use the term “subset.”
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for variable X, the sample distribution distpX:sq, the population distribution distpX:P q, and the

process (or probability) distribution distpX:REq. Much confusion in the mind of the student of

elementary statistics stems from the conflation of these three distribution types.

We previously defined the sample distribution distpX:sq. Here we re-iterate that definition and

give definitions of the other two distributions:

1. distpX:sq is the distribution of variable X for sample s, or the sample distribution of X. This

sample distribution is characterized by the collection of distinct values in X:s and their relative

frequencies. The sample distribution distpX:sq can be characterized by sample proportions of

the form propspX P Aq, over all A. Here propspX P Aq is the proportion of entities in s that

have X values in the set A.4

2. distpX:P q is the distribution of variable X for population P , or the population distribution

of X. This population distribution is characterized by the collection of distinct values in X:P

and their relative frequencies. The population distribution distpX:P q can be characterized by

population proportions of the form propP pX P Aq, over all A. Here, propP pX P Aq is the

proportion of entities in P that have X values in the set A.

3. distpX:REq is the distribution of variable X for [or wrt] process RE, or the process distribution

of X. This process (or probability) distribution is characterized by probabilities of the form

PREpX P Aq, over all A. Here, PREpX P Aq is the probability that RE will generate an

outcome that has X value in the set A.5

Remark. Taking the formal view of variable X as a function, it makes sense to take pX P Aq as

an inverse image notation with definition, pX P Aq “ te : Xpeq P Au. Then, for example, the

proportion and probability notations can be viewed as having the generic forms propsptsetuq, which

is the proportion of entities in s that fall in tsetu, and PREptsetuq, which is the probability that RE

will generate an outcome in tsetu.

4.2 Distribution Summaries

Statistical inference can be even more focused. Rather than using distpX:sq to reduce uncertainty

about distpX:P q or distpX:REq, we might use some other, less fundamental, summary of X:s to

reduce uncertainty about a summary of X:P or a summary of X:RE. Examples of these less

fundamental summaries include the mean, median, variance, and standard deviation. As an example,

consider the sample, population, and process means,

meanpX:sq “
Xps1q ` ¨ ¨ ¨ `Xpsnq

n
“

sum of X values for s

number of entities in s
,

4In other symbols, propspX P Aq “ n´1 řn
i“1 1pXpsiq P Aq or propspX P Aq “ n´1freqspX P Aq. As an example, if

X:s “ p3, 1, 1, 3, 2, 3q then for instance propspX “ 3q “ 3{6 and propspX ă 2q “ 2{6.
5By the definition of the process X:RE, the probability PREpX P Aq is identical to PX:REpAq, the probability that

X:RE will generate an outcome in the set A. In probability theory, PX:RE is called an induced probability function
(cf. Resnick, pp 74-5, 1998). This technical detail is mentioned because it shows the utility of the process notation
such as X:RE.
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meanpX:P q “
Xpe1q ` ¨ ¨ ¨ `XpeN q

N
“

sum of X values for P

number of entities in P
,

meanpX:REq “
ş

XpeqdPREpeq.

The process mean meanpX:REq is defined as the Lebesgue-Stieltjes integral that gives a probability

weighted average of possible X values. There are simple ways to compute this integral for commonly

encountered processes X:RE. For example, the integral can be computed as a sum or a Riemann

integral when PX:RE admits a density with respect to certain measures (cf. Resnick, Chapter 5,

1998). Even in these simpler settings, an elementary course should emphasize interpretation rather

than computation. Fortunately, the formal link results of Section 5.4 below provide a simple empirical

interpretation that can be presented before any discussion of computational formulas.

Conventionally, the simpler, but less informative, symbols x, µ, and µ have been used to represent

meanpX:sq, meanpX:P q, and meanpX:REq. The colon notation helps clarify which distribution or

summary is being referred to, which is very important if we are to explain confusing statements such

as, “the mean of the sample mean is equal to the population mean” or “the mean of the sample

has an approximate Normal distribution.” Unfortunately, the experienced instructor of elementary

statistics is generally so comfortable with such statements that he or she may not see how confusing

they are to the student, or recall how confusing they were to him or her.

The variance and standard deviation are two other important summaries that can be computed

using the distribution alone. The variances are defined as follows:

varpX:sq “
pXps1q ´meanpX:sqq2 ` ¨ ¨ ¨ ` pXpsnq ´meanpX:sqq2

n´ 1
,

varpX:P q “
pXpe1q ´meanpX:P qq2 ` ¨ ¨ ¨ ` pXpeN q ´meanpX:P qq2

N
,

varpX:REq “
ş

pXpeq ´meanpX:REqq2dPREpeq.

The process variance varpX:REq is defined as the Lebesgue-Stieltjes integral that gives a probability

weighted average of possible pX ´ meanpX:REqq2 values. As with the process mean, there are

simple ways to compute this integral for commonly encountered processes X:RE. Regardless of how

it is computed, the formal link results of Section 5.4 give this process variance a simple empirical

interpretation.

Remark: Conventionally, the simpler, but less informative, symbols s2, σ2, and σ2 have been

used to represent varpX:sq, varpX:P q, and varpX:REq.

The sample, population, and process standard deviations are defined to be the square roots of the

corresponding variances. That is, sdpX:sq “
a

varpX:sq, sdpX:P q “
a

varpX:P q and sdpX:REq “
a

varpX:REq. The process standard deviation, sdpX:REq, like the process variance, has a simple

empirical interpretation, which is described in Section 5.4.

Of course there are infinitely many other summaries that could be computed. For example, we

could consider medianpX:sq, medianpX:P q, and medianpX:REq, or other quantiles. For conve-

nience, the current paper will focus on the mean, variance, and standard deviation.
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5 Formal Links between Data and a Population or Process

Recall that our simplified goal of inferential statistics is to use data such as X:s to reduce uncer-

tainty about a population such as X:P or a process X:RE. As an initial step toward this end, the

fundamental results in this section can be used to formally link data to a population or process of

interest. In particular, these links show that when the sample s is generated or selected in a very

special way, data such as X:s can be used to approximate certain aspects of the population X:P or

process X:RE.

5.1 Samples and Data as Special-Case Process Outcomes

In an elementary statistics course, the fundamental results that link data to a population or process

are most easily illustrated by restricting attention to special sample selection/generation methods.

For inference about a population P , we will restrict attention to the special case where the sample

s “ ps1, . . . , snq can be viewed as an outcome of the sampling process SRSpn, P q, which denotes a

simple random sample of size n, taken with replacement, from the population P . This viewpoint

will be represented using the “process-outcome” notation

s “ ps1, . . . , snq Ð SRSpn, P q.

It is important to keep in mind that SRSpn, P q is a sampling process, which is a special random

experiment that is chosen and carried out by the researcher. (At this point, the instructor could

give a more careful definition of a SRS and compare and contrast it to other probability and non-

probability sampling processes. One important bit about the SRSpn, P q is that each entity in P has

the same chance of being selected.)

For inference about a process RE, we will restrict attention to the special case where the sample

s “ ps1, . . . , snq can be viewed as comprising the outcomes of n independent6 replications of RE;

that is, s “ ps1, . . . , snq is an outcome of a random experiment of the form REs “ REpnq, where

this replicate-process notation is defined as

REpnq “ “Random experiment RE is replicated n times.”

Using the process-outcome notation, s is viewed as s “ ps1, . . . , snq Ð REpnq. This implies

that the ith entity in s, si, is the outcome of the ith replicate of RE. Clearly the sample-generating

process REs “ REpnq is related to RE, the process of interest.

In summary, the fundamental linking results are most easily illustrated by assuming that

s Ð SRSpn, P q and s Ð REpnq, for population and process inference, respectively. Because

SRSpn, P q can be viewed as n replicates of SRSp1, P q, in symbols SRSpn, P q “ SRSp1, P qpnq,

these assumptions can be combined and stated more simply as s Ð REpnq, where for population

inference, RE “ SRSp1, P q and for process inference, RE is the process of interest. Here, the

“process outcome” notation tells us that the sample s is viewed as an outcome of a process (aka

6The adjective “independent” is arguably unnecessary here because replicating RE means that it must not depend
on the outcomes of any of the other replicates. If it did then it would not be a replicate.
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random experiment). It follows that the data X:s can be viewed as an outcome of a process that

depends on SRSpn, P q or REpnq, see Figure 3 in Appendix B. It is stressed that repeating a process,

of course, would result in a different outcome (a different sample and different data).

Remark: The process-outcome notation can be used more generally. For example,

Y psq Ð Y :REpnq tells us that Y psq is an outcome of the process or random experiment Y :REpnq.

In this case, it is also common to refer to Y psq as a realization of random variable Y [wrt REpnq].

5.2 Intuitive Population-Process Links

The “population versions” of the fundamental concepts described below make use of the following

intuitive result:

PSRSp1,P qpX P Aq “ propP pX P Aq, for any A, (1)

where the LHS is the probability that SRSp1, P q generates an outcome with X value in A and the

RHS is the proportion of the entities in P with X values in A. To motivate this equality, picture a

bag of 100 marbles, 25 of which are red and 75 are blue, and let X be the color variable. Here the

population P is the collection of N “ 100 marbles. The equality PSRSp1,P qpX “ redq “ propP pX “

redq “ 0.25 is the symbolic equivalent of the following: The probability that a simple random sample

of size 1 from P will result in a marble that is red is 0.25, which is identical to the proportion of

marbles in P that are red.

Because the process distribution distpX:REq is characterized by the probabilities PREpX P Aq,

for all A, and the population distribution distpX:P q is characterized by the proportions

propP pX P Aq, for all A, the result in (1) implies that

distpX:SRSp1, P qq “ distpX:P q. (2)

This result equates a special-case process (or probability) distribution and a population distribution.

It also implies that summaries that can be computed using the distributions alone are equal; for

example, meanpX:SRSp1, P qq “ meanpX:P q and varpX:SRSp1, P qq “ varpX:P q.

5.3 The Fundamental Theorem of Statistics

Arguably one of the most fundamental results in statistics is that, when the sample s is generated

or selected in a very special way, the sample distribution distpX:sq will resemble the corresponding

process distribution distpX:REq or population distribution distpX:P q. The resemblance generally

improves as the sample size grows.

We refer to this fundamental result as The Fundamental Theorem of Statistics (FTS). Appendix A

gives a general version of the FTS and explains its vaunted “fundamental theorem” label. Here, we

give a version of the FTS that can be introduced early on in an elementary course.
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The Fundamental Theorem of Statistics (FTS).

$

’

’

’

’

&

’

’

’

’

%

Process Version: If sÐ REpnq and n is large, then distpX:sq « distpX:REq.
The approximation generally improves as n grows.

Population Version: If sÐ SRSpn, P q and n is large, then distpX:sq « distpX:P q.
The approximations generally improve as n grows.

In words, if sample s comprises outcomes of n replicates of RE and n is large then the sample distri-

bution distpX:sq will be approximately equal to the process distribution distpX:REq, see Figure 4 in

Appendix B. The population version of the FTS follows from the process version because the sampling

process SRSpn, P q has the replicate-process form SRSpn, P q “ REpnq, where RE “ SRSp1, P q, and

because distpX:SRSp1, P qq “ distpX:P q by (2). The FTS applies to any variable X, so it applies

to any variable of the form gpXq as well. That is, provided sÐ REpnq and n is large, we have that

distpgpXq:sq « distpgpXq:REq.

The FTS motivates the idea behind using a sample distribution to approximate a process or

population distribution. It tells us that we can improve this approximation by replicating RE more

times or by taking a larger simple random sample (see Appendix A for more technical details).

Importantly, the FTS can also be used to give empirical interpretations of process distributions,

which can be very helpful for understanding distribution results such as those in Section 6.

The importance of the sampling process should be emphasized at this point. It should be made

clear that if s is not the result of REpnq or SRSpn, P q, then this FTS result is generally not applicable

and it could very well be that distpX:sq is not even close to resembling distpX:REq or distpX:P q,

even when n is very large. That is, the data may tell us little about the process or population

distribution, even if the sample size is very large.

5.4 Laws of Large Numbers

On an intuitive level, the FTS motivates the elementary versions of the Laws of Large Numbers

(LLN) given below, see also Figures 4 and 8 in Appendix B. This first LLN states that when the

sample s is generated or selected in a very special way, and the sample size is large, the sample

mean meanpX:sq will be approximately equal to the corresponding process mean meanpX:REq or

population mean meanpX:P q. There are many good sources for a more technical treatment of LLNs

(cf. Resnick, Chapter 7, 1998).

A Law of Large Numbers (LLN) for Means:

$

’

’

’

’

&

’

’

’

’

%

Process Version: If sÐ REpnq and n is large, then meanpX:sq « meanpX:REq.
The approximation generally improves as n grows.

Population Version: If sÐ SRSpn, P q and n is large, then meanpX:sq « meanpX:P q.
The approximation generally improves as n grows.

This LLN applies to any variable X. Therefore, it applies to any variable of the form gpXq,

including gpXq “ 1pX P Aq. From this observation, we have the following LLN for proportions.
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A Law of Large Numbers (LLN) for Proportions:

$

’

’

’

’

&

’

’

’

’

%

Process Version: If sÐ REpnq and n is large, then propspX P Aq « PREpX P Aq.
The approximation holds for any A and generally improves as n grows.

Population Version: If sÐ SRSpn, P q and n is large, then propspX P Aq « propP pX P Aq.
The approximation holds for any A and generally improves as n grows.

It is important that these LLNs are applied to means and proportions. The approximations are

unreasonable for sums and counts. For example, given the LLN for means, a student will surely

be tempted to jump to the conclusion that n meanpX:sq « n meanpX:REq; that is, sumpX:sq «

n meanpX:REq, with the approximation improving as n grows. In fact, this approximation generally

worsens as n grows! This example highlights a drawback to the use of the approximation symbol

“«,” which ignores the rates of convergence. It also reminds us to stress that the LLNs should be

applied to means and proportions, not sums and counts.

The LLN can be combined with almost sure convergence results for continuous functions (cf.

Ferguson, p.40, 1996) to produce the following law of large numbers for sample variances and standard

deviations.

A Law of Large Numbers (LLN) for Variances and Standard Deviations:

$

’

’

’

’

&
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’
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’

%

Process Version: If sÐ REpnq and n is large, then varpX:sq « varpX:REq and
sdpX:sq « sdpX:REq. The approximations generally improve as n grows.

Population Version: If sÐ SRSpn, P q and n is large, then varpX:sq « varpX:P q and
sdpX:sq « sdpX:P q. The approximations generally improve as n grows.

Viewed from a slightly different perspective, these LLNs give us the simple empirical interpreta-

tions of process distribution summaries that were alluded to in Section 4.2.

Empirical Interpretations of Process Distribution Summaries (Corollary to LLN):

• The LLN for Means tells us that meanpX:REq « meanpX:sq, where s Ð REpMq and M is

a very large number, e.g. M “ 109, see Figure 4 in Appendix B. In other words, the process

mean meanpX:REq is the long-run average of X values when RE is repeated over and over

again.

• The LLN for Proportions tells us that PREpX P Aq « propspX P Aq, where s Ð REpMq and

M is a very large number, e.g. M “ 109. In other words, the probability PREpX P Aq is the

long-run proportion of X values in A, when RE is repeated over and over again.

• The LLN for Variances and Standard Deviations tells us that varpX:REq « varpX:sq and

sdpX:REq « sdpX:sq, where s Ð REpMq and M is a very large number, e.g. M “ 109. In

other words, the process variance varpX:REq is the long-run variance of X values and the

process standard deviation sdpX:REq is the long-run standard deviation of X values when RE

is repeated over and over again.
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6 A Prelude to Statistical Inference

The LLN for Means tell us that when s Ð REpnq and n is large, the approximation meanpX:sq «

meanpX:REq should be reasonable. But just how reasonable is it? If we do not know meanpX:REq,

we cannot answer this question. However, it turns out that we can still address the related

Introductory Inference Questions:

1. Just how reasonable is the approximation meanpX:sq « meanpX:REq expected to be?

2. Given data X:s, what are plausible estimates of meanpX:REq?

3. Does data X:s give evidence against the claim that meanpX:REq “ µ0?

To address these questions, it will prove convenient to introduce the sample mean variable X (pro-

nounced “X-bar”) and the sample standard deviation variable S, which are defined as

Xpsq ” meanpX:sq and Spsq ” sdpX:sq.

We say that the variables X and S measure or describe the sample s because their values depend

on the entire collection of entities in s; we might call these summary variables. We emphasize that

the symbols X and S represent variables and Xpsq and Spsq represent variable values or observed

values of variables.

It is critically important to note that when s Ð REpnq, we can view the observed sample

mean Xpsq as an outcome of the process X:REpnq; that is, Xpsq Ð X:REpnq, see Figure 5 in

Appendix B. As the notation suggests, the process X:REpnq has action-based description, “Carry

out REpnq and report the X value of the outcome.” Similarly, we can view Spsq Ð S:REpnq, where

the process S:REpnq has an analogous action-based description. Again, we stress that repeating the

process (aka random experiment), e.g. X:REpnq, would result in a different outcome, e.g. a different

observed sample mean.

By the LLN, when s Ð REpnq and n is large, we will have that Xpsq « meanpX:REq. To

assess how good this approximation is expected to be (in a probabilistic sense), we note that REpnq

generated an outcome with X value equal to Xpsq. Now suppose that we can compute the chances

that REpnq would generate an outcome with X value within k units of meanpX:REq. If these

chances are high then we have reason to be confident that our single observed value Xpsq is within k

units of the meanpX:REq. To compute probabilities such as PREpnqp´k ď X ´meanpX:REq ď kq,

we must find or at least approximate the process distribution distpX:REpnqq, a distribution that is

characterized by probabilities of the form PREpnqpX P Aq. The next section gives a general description

of process distributions of variables, especially summary variables such as X and S.

6.1 Process Distributions of Summary Variables

Besides X and S, there are infinitely many other summary variables that can be used to measure

a sample. We will use the generic symbol Y to represent any one of these candidate variables. If

sÐ REs, then the variable Y in the process Y :REs is a random variable and Y psq is an outcome of
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this process Y :REs; i.e. Y psq Ð Y :REs. The process distribution distpY :REsq, which is character-

ized by probabilities of the form PREspY P Aq, has historically been called the sampling distribution

of variable Y [wrt the sample-generating process REs]. This label is appropriate because this dis-

tribution describes how the values of variable Y are expected to vary from sample to sample, in

replicates of REs. In spite of its appropriateness, we avoid the label sampling distribution for three

reasons: (1) it promotes conflation with a sample distribution, (2) it seems to restrict attention to

sample-selection processes and population inference, and (3) it unnecessarily introduces a distinct

name for something that has already been encountered, namely, the process distribution; e.g. there

is no qualitative difference between distpX:REq and distpX:REpnqq.

Remark: In the very special setting where REs “ SRSpn, P q, it can be argued that

distpY :SRSpn, P qq “ distpY :ps1, . . . , sM qq, where ps1, . . . , sM q are all possible samples of size n.

In words, the process distribution of Y , with respect to SRSpn, P q, is equal to the sample distribution

of Y over all possible samples of size n. Some sources use this latter sample distribution as the

definition of the process distribution of Y (and call it the sampling distribution, which adds to the

confusion between sampling and sample distributions!). We avoid this definition because (1) it is not

generally applicable when REs ­“ SRSpn, P q, (2) it masks the fact that the “sampling” distribution

is actually a process (aka probability) distribution not a sample distribution, and (3) it downplays

the fact that Y psq is an outcome of a process (aka random experiment), namely, Y :REs.

Especially in Frequentist statistical inference, a large amount of energy is devoted to finding

or approximating the process distributions of variables. Toward this end, more advanced statistics

courses employ tools of distribution and asymptotic theory. These tools are mostly unavailable in

elementary statistics courses and, if the instructor deemed it important for students to “find” or

“approximate” a process distribution, different approaches would be required. Typically, instructors

of elementary courses allude to at least one of the following three approaches:

1. If REs can be carried out manually or via computer simulation, then we can use the FTS to

approximate the process distribution distpY :REsq. Specifically, by the FTS, if ps1, . . . , sM q Ð

REspMq and M is large, then distpY :ps1, . . . , sM qq « distpY :REsq. See Figure 6 in Ap-

pendix B.

2. If Y “ gpXq and X:REs can be carried out manually or via computer simulation, then we can

use the FTS to approximate the process distribution distpY :REsq. Specifically, by the FTS, if

px1, . . . , xM q Ð pX:REsqpMq and M is large, then distpg:px1, . . . , xM qq « distpg:pX:REsqq.

But g:pX:REsq and gpXq:REs are identical processes (see Figure 7 in Appendix B) and the

latter is precisely Y :REs. Hence we have that distpg:px1, . . . , xM qq « distpY :REsq.

3. If REs “ REpnq and Y “ X, the Central Limit Theorem of the next section gives a very

reasonable approximation to the process distribution of X:REpnq.
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6.2 A Central Limit Theorem for the Sample Mean

We begin with two useful summaries of the process distribution distpX:REpnqq:

meanpX:REpnqq “ meanpX:REq and sdpX:REpnqq “
sdpX:REq
?
n

.

By the LLNs, these results can be given empirical interpretations. (These process mean and standard

deviation results do not generally hold for X:REs when REs ­“ REpnq.)

In the population-inference setting where RE “ SRSp1, P q, we have meanpX:SRSpn, P qq “

meanpX:P q. In words, under SRSpn, P q, “the process mean of the sample mean is equal to the

population mean”! By the empirical interpretation of a process mean, this implies that the long-run

average of the X values for many replications of SRSpn, P q is equal to meanpX:P q.

In this special-case setting where RE “ SRSp1, P q, we have sdpX:SRSpn, P qq “
sdpX:P q
?
n

.

In words, under SRSpn, P q, the process standard deviation of the sample mean is equal to the

population standard deviation divided by the square root of the sample size. By the empirical

interpretation of a process standard deviation, we have that the long-run standard deviation of the

X values for many replications of SRSpn, P q is equal to sdpX:P q{
?
n. (This result tells us that the

larger the sample size, the smaller the process variability of the sample mean.)

The next theorem gives us more than just the mean and standard deviation of X:REpnq. It

gives us an approximation to distpX:REpnqq that is reasonable provided n is sufficiently large. This

almost magical approximation depends only on the mean and variance of X:RE, and is reasonable

regardless of the form of distpX:REq. Because this approximation is based on a limit theorem that is

considered of central importance to probability theory and statistical inference, it is called a Central

Limit Theorem (see Fischer, 2010).

A Central Limit Theorem (CLT):
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Process Version: If n is sufficiently large, then

X:REpnq
a
„ NpmeanpX:REq,

sdpX:REq
?
n

q.

This approximation holds regardless of the distpX:REq, and generally improves as n grows.

Population Version: If n is sufficiently large, then

X:SRSpn, P q
a
„ NpmeanpX:P q,

sdpX:P q
?
n

q.

This approximation holds regardless of the distpX:P q, and generally improves as n grows.

The FTS gives us an empirical interpretation of this CLT. For example, if ps1, . . . , sM q Ð REpnqpMq

andM is large, then distpX:ps1, . . . , sM qq
FTS
« distpX:REpnqq

CLT
« NpmeanpX:REq, sdpX:REq{

?
nq.

It is this application of the FTS that is exploited in graphical applets that “show the CLT in ac-

tion.” (See for example, http://onlinestatbook.com/stat_sim/.) It is important to note that
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distpX:ps1, . . . , sM qq ff distpX:REq, a common mis-perception among students (delMas et al., 2004;

Thompson et al., 2007); indeed these distributions can look very different when n is large.

The condition that n be “sufficiently large” is of course an important condition in practice. For

any sample size n, the reasonableness of the approximation depends on the skewness and number of

support points of distpX:REq. Fortunately, unless distpX:REq is very skewed, the CLT approxima-

tions would usually be deemed reasonable for n ě 30 or so.

The CLT approximation is directly useful for approximating probabilities of the form PREpnqpX P

Aq, when meanpX:REq and sdpX:REq are known values and n is sufficiently large. For exam-

ple, suppose that RE “ “roll a balanced six-sided die” and X is the number of up-dots, so that

meanpX:REq “ 3.5 and sdpX:REq “ 1.708. The CLT gives us a simple way to approximate the

chances of seeing at least 360 up-dots on 100 rolls, i.e. a sample average of at least 3.6 up-dots on

100 rolls of the balanced die. Specifically, the CLT tells us that X:REp100q
a
„ Np3.5, 1.708{

?
100q,

so the chances are PREp100qpX ě 3.6q « P pNp3.5, 0.1708q ě 3.6q “ 0.279.

6.3 Standardized and Studentized Mean Approximations

The CLT approximation is not directly useful for the inference setting where meanpX:REq and

sdpX:REq are both unknown. However, when interest lies in making inference about meanpX:REq,

there is a particularly useful “Studentized Mean Approximation” result that is motivated by the CLT

and the fact that the sample standard deviation variable S is a reasonable estimator of sdpX:REq;

recall that under REpnq, the LLN tells us that Spsq « sdpX:REq. To highlight the motivating role

of the CLT, we first give a “Standardized Mean Approximation” result, which is an alternative, but

equivalent, specification of the CLT approximation result.

Standardized Mean Approximation (CLT): For n sufficiently large,

X ´meanpX:REq

sdpX:REq{
?
n

: REpnq
a
„ Np0, 1q.

Studentized Mean Approximation (CLT variant): For n sufficiently large,

X ´meanpX:REq

S{
?
n

: REpnq
a
„ Np0, 1q.

For the special-case REpnq “ SRSpn, P q, we have meanpX:REq “ meanpX:P q and sdpX:REq “

sdpX:P q. The FTS can be used to give this Studentized approximation an empirical interpretation.

Specifically, if ps1, . . . , sM q Ð REpnqpMq and M is large, then

dist

ˆ

X ´meanpX:REq

S{
?
n

:ps1, . . . , sM q

˙

« dist

ˆ

X ´meanpX:REq

S{
?
n

:REpnq

˙

a
„ Np0, 1q.

Technically, the Studentized approximation follows from the Standardized approximation along

with an application of Slutsky’s theorem (cf. Ferguson, p. 41, 1996). The adjective “Studentized” is a

nod to the historical contribution of William Gosset, who published under the pseudonym “Student.”

Gosset studied how the process distribution of the Standardized Mean changed when the process
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standard deviation was replaced by an estimator. In Student (1908), he found the exact process

distribution of what we are calling the “Studentized mean” under the restrictive assumption that

X:RE is Normal and the sample was the outcome of REpnq. This process distribution is now called

“Student’s t distribution based on n´ 1 degrees of freedom,” and denoted tpn´ 1q.

In the Studentized Approximation, the Np0, 1q approximation can be replaced by the Student’s

tpn´1q approximation. Some instructors and practitioners prefer this t approximation to the Normal

approximation for the following reasons: (1) For large n, the approximations are nearly identical;

(2) for smaller n, the t approximation leads to more conservative inference; and (3) when X:RE „

NpmeanpX:REq, sdpX:REqq, the t approximation is exact for all n, see Student (1908).

6.4 Introductory Inference Questions: Revisited

The initial paragraph of this section listed three questions about the process mean meanpX:REq.

Here we focus on the first two of these questions. The third question would be addressed using tests

of hypotheses or significance testing, an important topic that, owing to space limitations, will not be

covered in the current paper.

Consider Question 1, Just how reasonable is the LLN approximation Xpsq « meanpX:REq

expected to be? Assuming that sÐ REpnq, we have that Xpsq Ð X:REpnq and Spsq Ð S:REpnq.

We also know, by the Standardized Mean Approximation and a property of the Np0, 1q curve,

that

0.95 « PREpnqp´1.96
sdpX:REq
?
n

ď X ´meanpX:REq ď 1.96
sdpX:REq
?
n

q.

That is, there is approximately a 95% chance that REpnq will generate a sample s1 with sample mean

value Xps1q that is within 1.96
sdpX:REq
?
n

units of meanpX:REq. When sdpX:REq is unknown, as

is usually the case, we can invoke the LLN and replace it by the observed sample standard deviation

Spsq “ sdpX:sq. For example, suppose that n “ 35 and Spsq “ 12.7, where s Ð REpn “ 35q.

Then we can say that there is approximately a 95% chance that REp35q will generate a sample with

sample mean value that is within 1.96p12.7{
?

35q “ 2.147 units of the process mean meanpX:REq.

Consider Question 2, Given the data X:s, what are plausible estimates of meanpX:REq? As-

suming that sÐ REpnq, we have that Xpsq Ð X:REpnq and Spsq Ð S:REpnq. We also know, by

the Studentized Mean Approximation and a property of the Np0, 1q curve, that

0.95 « PREpnqp´1.96
S
?
n
ď X ´meanpX:REq ď 1.96

S
?
n
q.

That is, there is approximately a 95% chance that REpnq will generate a sample s1 with sam-

ple mean value Xps1q that is within 1.96
Sps1q
?
n

units of meanpX:REq. Equivalently, there is ap-

proximately a 95% chance that REpnq will generate a sample s1 such that the interval CIps1q ”

rXps1q´1.96
Sps1q
?
n
, Xps1q`1.96

Sps1q
?
n
s includes the value meanpX:REq. For this reason, we say that

with 95% confidence, plausible estimates of the meanpX:REq are those values in our single observed

interval CIpsq; i.e. between Xpsq ´ 1.96
Spsq
?
n

and Xpsq ` 1.96
Spsq
?
n

.
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Consider the process CI:REpnq, where the random variable CI is aptly called a random inter-

val. We observed CIpsq Ð CI:REpnq and argued that PREpnqpCI Q meanpX:REqq « 0.95. For

this reason, we call CIpsq an [observed] approximate 95% confidence interval for the meanpX:REq.

Most instructors believe it is important to stress that the “95% confidence” property has a probabil-

ity interpretation only for the confidence interval process CI:REpnq, not for the single observed

confidence interval CIpsq. That is, much to the chagrin of students and instructors alike, the

phrase “95% confidence” generally cannot be given the direct “post-data” probability interpreta-

tion, 0.95 « P pCIpsq Q meanpX:REqq, which is to say that there is about a 95% probability that

the meanpX:REq is contained in the observed confidence interval CIpsq. For an illustrative example,

see DeGroot and Schervish (2002:412).

Technically, the “95%” refers to the “pre-data” probability that REpnq will generate a sample

that gives a confidence interval based on the formula CI that containsmeanpX:REq. This probability

is usually given an empirical interpretation via the LLN. If ps1, . . . , sM q Ð REpnqpMq then provided

M is large, the LLN for proportions tells us that propps1,...,sM qpCI Q meanpX:REqq « PREpnqpCI Q

meanpX:REqq « 0.95. That is, if REpnq is repeated many, say M , times then about 95% of the like-

constructed confidence intervals, the CIps1q, . . . , CIpsM q, will contain the meanpX:REq. Calling

CIpsq a 95% confidence interval makes sense because CIpsq can be thought of as one of these many

generated intervals, of which 95% contain meanpX:REq.

7 Examples

Using only the concepts discussed in this paper, we can address questions like those posed in the

next two examples. See Appendix C for detailed solutions.

Example 1. Population Inference. Consider a population of potential ferry boat passengers. As

part of a ferry-boat safety study, a sample of 1000 was taken from this population. For this sample,

the average weight was 158 pounds and the standard deviation was 22 pounds.

(a) What can be said about the population using the safety study data?

(b) If a simple random sample of 350 passengers will be taken, what are the chances that the mean

weight will exceed 162 pounds; i.e. the total weight will exceed the ferry boat’s weight limit of

56700 pounds?

(c) If many simple random samples of size 350 will be taken, about what fraction of the samples

will have mean weight that exceeds 162 pounds; i.e. a total weight that exceeds the ferry boat’s

weight limit of 56700 pounds?

(d) If 350 passengers board the ferry, what are the chances that the mean weight exceeds 162 pounds;

i.e. the total weight exceeds the weight limit of 56700 pounds?

(e) Suppose that the original safety study’s sample was the result of a simple random sample of

size 1000, taken with replacement, from the population. Give a range of plausible estimates of

the average weight for the population.
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Example 2. Process Inference. An unbalanced six-sided die was rolled 1000 times. The number

of rolls that were ‘1’s, ‘2’s, ‘3’s, ‘4’s, ‘5’s, and ‘6’s are 232, 229, 220, 106, 100, and 113, respectively.

(a) What can be said about the die rolling process?

(b) What are plausible estimates of the mean number of up-dots for this die-rolling process?

(c) What are the chances that the range (= maximum minus the minimum) for the next 10 rolls

will be at least 4?

8 Discussion

Although this paper includes some material that is not meant for direct consumption by the el-

ementary statistics student, it presents concepts and notations that are targeted at this student

audience. The overarching goals of this paper are (1) to outline an approach that allows instructors

to present formal links between data and the targets of inference within the first few class periods of

an elementary statistics course; (2) to equip instructors with tools that facilitate a smooth transition

from data to statistical inferences about populations and processes; and (3) to realize these first

two goals earlier in a survey course so that more time can be devoted to other important statistical

concepts (see for example, the American Statistical Association’s GAISE report, 2012). The less

conventional, more explicit notations of this paper serve to highlight the preeminent roles of entities

such as variables, samples, populations, and processes. They also mitigate problems of conflating

concepts such as sample, population, and process means or distributions. On a related note, we

recommended avoiding the phrase “sampling distribution” for several reasons (see Section 6.1).

This paper’s elementary versions of the FTS, LLN, and CLT are applicable only when the data

have the special form X:s, where the sample s is the outcome of a random experiment of the form

REpnq or SRSpn, P q. We focused on this special setting for several reasons including: (1) It is

arguably a very important and commonly-encountered setting in practice; (2) the approximation

results of this paper also apply for the SRS case, where the sample is taken without replacement,

provided the sample size n is a small fraction of the population size N , e.g. n{N ď 0.10; (3) it allowed

us to avoid introducing datum variables, the X1, . . . , Xn of mathematical statistics; (4) it allowed us

to avoid introducing the concept of independent and identically distributed random variables; and

(5) it allowed us to present the fundamental linking results, FTS and LLN, early on in an elementary

course.

This paper’s special setting does, of course, preclude several cases encountered in more advanced

statistics courses and applied work. We list a few examples of cases not covered in this paper: (1) In

a more mathematical course, we encounter data of the form X1psq, . . . , Xnpsq, where at least one of

the components, say Xkpsq, depends on multiple sj ’s. (2) In a time series course, it is usually the

case that s Ð REs, where REs ­“ REpnq. For example, REs can often be viewed as a sequential

random experiment of the form REs “ RE1:RE2: . . . :REn, where the components REj depend on

the outcomes of the previous RE1, . . . , REj´1. (3) In a sampling theory course, we might consider
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sub-sampling outcomes of a process of interest; or sampling that depends on X values; or sampling

plans other than simple random sampling with replacement.

That the data are of the form X:s, where sÐ REpnq, can be viewed as an intuitively appealing

sufficient condition for the applicability of more general versions of the FTS, LLN, and CLT that

apply when data are realizations of independent and identically distributed (IID) random variables.

To see why this is so, note that the data x “ X:s has components of the form xi “ Xipsq, where

Xipsq “ Xpsiq. This fact along with the condition that sÐ REpnq implies that the data x1, . . . , xn

are realizations of random variables X1, . . . , Xn, which are IID [with respect to REpnq] with common

distribution distpX:REq. Most textbooks give only the IID versions of the FTS, LLN, and CLT,

which unfortunately means that discussion of these fundamental concepts must be delayed until the

concept of IID random variables has been covered.

There is a rich literature on statistics education (see for example, Moore et al. 1995; delMas

et al. 2004; Thompson et al. 2007; Garfield and Ben-Zvi, 2007, and references therein). This

research makes it abundantly clear that there is a need to take a fresh look at the way statistics

is taught and learned. The current paper was motivated by this research as well as the author’s

personal experience teaching elementary statistics courses to undergraduate non-statistics-majors at

the University of Iowa.

References

American Statistical Association, (2012), Guidelines for Assessment and Instruction in Statistics

Education: College Report, Alexandria, VA: Author.

Bingham, N.H. (2000), “Studies in the History of Probability and Statistics XLVI. Measure into

Probability: From Lebesgue to Kolmogorov,” Biometrika, 87, 145-156.

Cantelli, F.P. (1933), “Sulla Determinazione Empirica della Leggi di Probabilità,” Giorn. Ist. Ital.
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Appendix A. The Fundamental Theorem of Statistics

The Glivenko-Cantelli Theorem (Glivenko 1933, Cantelli 1933) states that the empirical distribution

function based on IID real-valued random variables uniformly converges almost surely to the common

distribution function. As Csörgő (2002) puts it, the Glivenko-Cantelli Theorem “guarantees that the
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notion of doing statistics via taking random samples does make sense, ultimately almost surely.”

Csörgő (2002) goes on to note that Loéve (1955) called the Glivenko-Cantelli Theorem “the funda-

mental theorem of statistics.” (Others agree with Loéve, cf. Bingham 2000, Chandra and Chatterjee

2001).

Below we give a simple, yet broadly applicable, generalization of the Glivenko-Cantelli Theorem

and refer to it as The Fundamental Theorem of Statistics (FTS). For a nice discussion of generalized

Glivenko-Cantelli results, see Gaenssler and Stute (1979) and references therein. For technical pre-

cision, this FTS is stated using measure-theoretic probability concepts. Obviously, this statement

of the FTS would not be used in an elementary statistics course. Indeed, one of the primary goals

of this paper is to develop a simplified version of this FTS that can be introduced early on in any

elementary statistics course.

The Fundamental Theorem of Statistics. Suppose that X1, . . . , Xn, . . . are IID random variables

defined on probability space pΩ,F , P0q with values in the measurable space pχ,Aq. Consider two

important cases: (1) If χ is countable (so Xi’s are discrete and possibly non-Euclidean), choose

A “ tset of all subsets of χu; (2) If χ Ď IRK (so Xi’s are K-dimensional Euclidean vectors), choose

A “ BorelpIRKq. Let the common distribution of the Xi’s be denoted by P and defined as

P pAq ” P0pX1 P Aq, for A P A. Define the sample (or empirical) distribution Pn as

PnpAq ” n´1
řn

i“1 1pXi P Aq, for A P A. It follows that

sup
APA0

|PnpAq ´ P pAq|
a.s.
Ñ 0,

where A0 “ tset of all subsets of χu “ A when χ is countable and A0 “ tˆK
k“1p´8, xks : xk P

IRu Ă A when χ Ď IRK . For either case, P “ Q on A0 implies that P “ Q on A. In this sense,

the result states that the sample distribution Pn converges almost surely to the common probability

distribution P .

Glivenko (1933) showed the result for χ “ IR1 in the continuous case. Cantelli (1933) showed

the result for χ “ IR1 in the general case. Wolfowitz (1960) showed the result for χ “ IRK in the

general case (see also the corollary to Theorem 4 in DeHardt (1971)). A straightforward application

of Scheffé’s lemma (cf. Resnick, 1998:253) can be used to show the result for the case when χ

is countable. See Gaenssler and Stute (1979) for a discussion of these results, as well as other

generalizations.

The Fundamental Theorem of Statistics (FTS) represents a useful and direct link between data

and the object of inference, namely a process or a population. The FTS motivates the utility of

increased sample sizes and explains why we go through the trouble of describing a sample (data)

distribution when we are really interested in inferences about a process [aka probability] or population

distribution. The FTS also motivates certain laws of large numbers (LLN) and validates simulation-

based approximations for process [aka sampling] distributions. Csörgő (2002) also points out that

without the FTS, “the initial idea of bootstrapping would not have been possible.” In sum, the FTS

is truly fundamental to the study of statistics

22



Appendix B. Figures Corresponding to Notations and Concepts

This appendix gives graphical representations of many of the main concepts described in the body of

the paper. Instructors might find these useful for explaining the concepts. In the following figures,

variables are depicted as “function boxes” and processes are depicted as “clouds.”
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Figure 1. X values for the sample (i.e. data), X:s, and X values for the population, X:P .
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X:RE Process 

N.B.  X(e)        X:RE ;      

 

         i.e.  observed value X(e)  is outcome of X:RE process.   Figure 2. Process X:RE. Here Xpeq Ð X:RE; i.e. Xpeq is an outcome of the X:RE process.
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         i.e.  data is outcome of  n replications of  X:RE process.   

Figure 3. Data as an Outcome of a Process. Here X:sÐ pX:REqpnq; i.e. the data are the outcomes

of n replications of X:RE.
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Figure 4. The Fundamental Theorem of Statistics and a Law of Large Numbers for Means. This

also depicts the empirical interpretation of the process mean meanpX:REq.
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Figure 5. Process X:REpnq. Here Xpsq Ð X:REpnq; i.e. the observed sample mean is an outcome

of the X:REpnq process.
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Because (s1, …, sM)  ←  REs(M),  and assuming M is large,  

the FTS implies that   dist(Y:(s1, …, sM) )  ≈   dist(Y:REs). Figure 6. Approximating distpX:REpnqq using the FTS. Because ps1, . . . , sM q Ð REpnqpMq and

assuming that M is large, the FTS tells us that distpX:ps1, . . . , sM qq « distpX:REpnqq. Approxi-

mating distpY :REsq using the FTS. Because ps1, . . . , sM q Ð REspMq and assuming that M is large,

the FTS tells us that distpY :ps1, . . . , sM qq « distpY :REsq.
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Figure 7. Equivalence of Processes g:pX:REsq and gpXq:REs.
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Appendix C. Solutions to Examples

Example 1. Population Inference. Consider a population of potential ferry boat passengers. As

part of a ferry-boat safety study, a sample of 1000 was taken from this population. For this sample,

the average weight was 158 pounds and the standard deviation was 22 pounds.

(a) What can be said about the population using the safety study data?

Let P be the population of potential ferry boat passengers, letW “ weight and s “ ps1, . . . , s1000q

be the safety study’s sample of passengers. The data are W :s and we are given meanpW :sq “

158 and sdpW :sq “ 22.

If we can believe that sÐ SRSpn “ 1000, P q, then by the FTS and LLNs,

distpW :P q « distpW :sq, meanpW :P q « meanpW :sq “ 158, sdpW :P q « sdpW :sq “ 22.

Thus, if s Ð SRSp1000, P q, the population distribution of weights will look very similar to

the sample distribution, the population mean will be around 158, and the population standard

deviation will be around 22.

If, however, sÐ{ SRSp1000, P q, which is most likely the case, then the FTS and LLNs do not

generally apply and we can say very little about distpW :P q.

(b) If a simple random sample of 350 passengers will be taken, what are the chances that the mean

weight will exceed 162 pounds; i.e. the total weight will exceed the ferry boat’s weight limit of

56700 pounds?

The sample to be taken, say s0, can be viewed as s0 Ð SRSpn “ 350, P q. We use s0 because

the symbol s is reserved for the safety study’s sample of 1000. We define the sample mean

variable W as W ps0q “ meanpW :s0q, the average weight for the sample s0. The chances that

the average weight for the sample will exceed 162 is determined by the process distribution

distpW :SRSp350, P qq. By the CLT, regardless of the shape of distpW :P q,

W :SRSp350, P q
a
„ Np meanpW :P q,

sdpW :P q
?

350
q.

We are not given the population mean or standard deviation, so we will use the LLN approx-

imations meanpW :P q « meanpW :sq “ 158 and sdpW :P q « sdpW :sq “ 22. That is, we will

approximate the chances using W :SRSp350, P q
a
„ Np 158,

22
?

350
“ 1.176q. In particular,

the chances are

PSRSp350,P qpW ą 162q « P pNp158, 1.176q ą 162q “ 0.00034.

There is around a 3 in 10000 chance that the average weight of the simple random sample of

350 will exceed 162. That is, there is around a 3 in 10000 chance that the total weight for the

simple random sample of 350 will exceed the weight limit of 56700.
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(c) If many simple random samples of size 350 will be taken, about what fraction of the samples

will have mean weight that exceeds 162 pounds; i.e. a total weight that exceeds the ferry boat’s

weight limit of 56700 pounds?

Let s1, s2, . . . , sM be the many simple random samples of size 350. These can be viewed as

ps1, . . . , sM q Ð SRSp350, P qpMq.

Define the sample mean variable W as in part (b). For example, W ps1q is the average weight

for the first simple random sample s1. By the FTS and CLT, we have

distpW :ps1, . . . , sM qq
FTS
« distpW :SRSp350, P qq

CLT
« Np meanpW :P q,

sdpW :P q
?

350
q.

Again we will invoke the LLNs and replace meanpW :P q and sdpW :P q by meanpW :sq “ 158

and sdpW :sq “ 22. We have that

distpW :ps1, . . . , sM qq
FTS,CLT,LLN

« Np 158,
22
?

350
“ 1.176q.

Therefore, we have that

propps1,...,sM qpW ą 162q « P pNp158, 1.176q ą 1.62q “ 0.00034.

That is, about 3 in 10000 of the many simple random samples of size 350 will have mean weight

that exceeds 162. That is, about 3 in 10000 of the many simple random samples of size 350

will have total weight exceeding 56700.

(d) If 350 passengers board the ferry, what are the chances that the mean weight exceeds 162 pounds;

i.e. the total weight exceeds the weight limit of 56700 pounds?

Represent the 350 boarded passengers by sb and view this sample as sb Ð REs. Here REs is

the sample-generating process. If we could assume that REs “ SRSp350, P q, then we could use

the result of part (b) to conclude that the chances are only about 3 in 10000. Unfortunately,

passengers travel in groups (picture a traveling football team or a travelling ballet company)

and the assumption that the boarding sample can be viewed as the result of a simple random

sample of size 350 from P is simply not tenable. Therefore, the 3 in 10000 approximation is

probably not reasonable and safety personnel should not rule out the possibility that there is a

much higher chance that 350 passengers will exceed the total weight limit (again, picture that

travelling football team). In practice, we could make different assumptions about REs and use

computer simulation and the FTS to inform our guess at the process distribution distpW :REsq.

(e) Suppose that the original safety study’s sample was the result of a simple random sample of

size 1000, taken with replacement, from the population. Give a range of plausible estimates of

the average weight for the population.

Assuming that sÐ SRSp1000, P q, the Studentized Mean Approximation gives

W ´meanpW :P q

S{
?

1000
: SRSp1000, P q

a
„ Np0, 1q,
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where the standard deviation variable S is defined as Spsq “ sdpW :sq, the standard deviation

of the weight values for sample s. This approximation gives

0.95 « PSRSp1000,P qp´1.96 ď
W ´meanpW :P q

S{
?

1000
ď 1.96q

“ PSRSp1000,P qpW ´ 1.96
S

?
1000

ď meanpW :P q ďW ` 1.96
S

?
1000

q.

It follows that an approximate 95% observed confidence interval is

CIpsq “ rW psq´1.96
Spsq
?

1000
, W psq`1.96

Spsq
?

1000
s. Plugging in W psq “ meanpW :sq “ 158 and

Spsq “ sdpW :sq “ 22, we have that CIpsq “ r158´ 1.96p22{
?

1000q, 158` 1.96p22{
?

1000qs “

r156.6, 159.4s. With 95% confidence, plausible estimates of the population mean meanpW :P q

are between 156.6 and 159.4 pounds. Of course, if the sample s was not obtained via a

SRSp1000, P q, then this interval is not valid.

Example 2. Process Inference. An unbalanced six-sided die was rolled 1000 times. The number

of rolls that were ‘1’s, ‘2’s, ‘3’s, ‘4’s, ‘5’s, and ‘6’s are 232, 229, 220, 106, 100, and 113, respectively.

(a) What can be said about the die rolling process?

One possible way to define the die rolling process is RE “ “roll the unbalanced six-sided

die and report the number of up-dots.” Let X be the number of up-dots on a die and let

s “ ps1, . . . , s1000q be the outcomes for the 1000 rolls. Note that with our definition of RE, we

have Xpsjq “ sj because outcomes of RE are in fact the number of up-dots. We are not given

the data X:s, but we are given the counts, freqspX “ 1q “ 232, ..., freqspX “ 6q “ 113. In

this setting, these counts determine the sample distribution distpX:sq. Because it is reasonable

to assume that sÐ REp1000q, the FTS is applicable and we have distpX:REq « distpX:sq.

That is, the data X:s tells us a lot about the process X:RE. For example, the FTS (or LLN)

tells us

PREpX “ 1q « propspX “ 1q “ 0.232, PREpX “ 2q « propspX “ 2q “ 0.229,
PREpX “ 3q « propspX “ 3q “ 0.220, PREpX “ 4q « propspX “ 4q “ 0.106,
PREpX “ 5q « propspX “ 5q “ 0.100, PREpX “ 6q « propspX “ 6q “ 0.113.

For instance, the chances that RE generates an outcome with X value equal to 1 (i.e. the

chances that this unbalanced die will be rolled and land with a ‘1’ on the up-face) is approxi-

mately equal to 0.232, the proportion in the sample s with X value equal to 1.

(b) What are plausible estimates of the mean number of up-dots for this die-rolling process?

Use part (a)’s definitions of process RE and variable X. The most important first step is to

recognize that the target of inference is the process mean meanpX:REq, which by the LLN

can be interpreted as the long-run average of X (number of up-dots) values when RE (roll the

die) is repeated over and over again.

Define X and S as Xpsq “ meanpX:sq and Spsq “ sdpX:sq. For the observed sample s,

we have that Xpsq “ 2.952 and Spsq “ 1.637. Because s Ð REp1000q, the Studentized

Mean Approximation is applicable: we have that X´meanpX:REq

S{
?
1000

: REp1000q
a
„ Np0, 1q and
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hence CIpsq “ rXpsq ´ 1.96 Spsq
?
1000

, Xpsq ` 1.96 Spsq
?
1000

s “ r2.851, 3.053s is an approximate 95%

confidence interval for meanpX:REq. That is, with 95% confidence, plausible estimates of the

process mean meanpX:REq are between 2.851 and 3.053 .

(c) What are the chances that the range (= maximum minus the minimum) for the next 10 rolls

will be at least 4?

Let s0 “ ps1, . . . , s10q represent the outcomes for the next 10 rolls. Let the range variable R be

defined as Rps0q “ maximumts1, . . . , s10u ´minimumts1, . . . , s10u. It is reasonable to view

s0 Ð REp10q, where RE was defined in part (a). To answer the question about the chances, we

will consider the process distribution distpR:REp10qq and use it to compute PREp10qpR ě 4q.

Because R is not an average of the 10 outcomes, the CLT approximation to the distpR:REp10qq

is not applicable. We will have to consider a different approximation.

In a more advanced course, we might set out to derive the distribution of R:REp10q using

distribution theory, but this is not a simple problem. Here, we will first consider generating

ps1, . . . , sM q Ð REp10qpMq, where M is large,

so that, by an application of the FTS, we have distpR:ps1, . . . , sM qq « distpR:REp10qq.

Unfortunately, we cannot carry out RE because we do not have access to the unbalanced die

used to generate the data in this problem. In fact, we cannot even simulate RE because we do

not know the probabilities such as PREptjuq. As a fix, we will instead carry out RE˚, where

PRE˚ptjuq “ propsptjuq, so distpRE˚q “ distpsq. That is, RE˚ is the random experiment with

action-based description, “simulate the roll of a die that has probabilities 0.232, 0.229, 0.220,

0.106, 0.100, and 0.113 of coming up ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, and ‘6’, respectively.” Now by the FTS

applied to the observed sample s Ð REp1000q, we have distpRE˚q “ distpsq
FTS
« distpREq,

i.e. RE and RE˚ should have similar distributions. Therefore, if

ps1, . . . , sM q Ð RE˚p10qpMq, where M is large,

then two applications of the FTS will give us

distpR:ps1, . . . , sM qq
FTS
« distpR:RE˚p10qq

FTS
« distpR:REp10qq.

It follows that PREp10qpR ě 4q
LLN
« PRE˚p10qpR ě 4q

LLN
« propps1,...,sM qpR ě 4q.

A computer simulation using M “ 106, gave propps1,...,sM qpR ě 4q “ 0.895027. Thus, there is

about a 90% chance that the range (= max minus min) for the next 10 rolls of this unbalanced

die will be at least 4.
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